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Introduction 
All species of marine turtle are threatened with extinction (six species) or 
listed as Data Deficient (one species) (IUCN 2018). Many populations are in 
global decline and face threats such as bycatch, pollution, climate change, 
egg predation, emerging infectious diseases, loss of important habitats such 
as nesting beaches, and other environmental anthropogenic hazards (Gall & 
Thompson 2015; Santos et al. 2015; Varghese 2015; Rees et al. 2016; Lutcavage 
et al. 1997). In Australia, a species recovery plan (Commonwealth of Australia 
2017) has recently been created for six of the seven marine turtle species 
found globally, and conservation interventions are commonplace as part of an 
objective to support the management of marine turtle populations. The green 
turtle (Chelonia mydas) is currently IUCN red-listed as Endangered (Seminoff 
2004), although this assessment is now considered out of date (i.e. more than 
ten years old) and therefore may be an inaccurate representation of its status.  
Globally, turtle rehabilitation centres seek to rescue injured or sick marine 
turtles, including C. mydas, and then rehabilitate and release recovered 
individuals. Turtles may remain in rehabilitation centres for periods varying 
from weeks to years or in worst case scenarios require permanent captive 
care. A study of rehabilitation facilities in Florida (USA) between 1986 and 
2004 found low success rates, whereby 61.5% of turtles died in rehabilitation 
and only 36.8% were released back into the wild (Baker et al. 2015).

Stress associated with captivity and poor health status may contribute to 
low survivorship and release success (Molony et al. 2006; Vogelnest 2008; 
Dickens et al. 2009). Acute and chronic stress is well documented in captive 
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wildlife, as is the relationship between the physiological presentation of 
stress, and the welfare of animals housed in captive environments (Narayan 
et al. 2018). Stress can cause an imbalance in the physiological equilibrium 
of an animal, whereby resources are redirected from normal biological 
functions in order to cope with the negative stimuli and initiate the ‘fight or 
flight’ response (Martin et al. 2011; Dantzer et al. 2014). Short-term, acute 
stress is a normal aspect of survival in the wild and each animal has its own 
basal corticosterone level; however, a more extreme acute stress response, 
or long-term exposure to negative stimuli resulting in chronic stress, can be 
detrimental to the animal and its recovery (Narayan et al. 2012; Narayan 
et al. 2018). Chronic stress has the ability to compromise some biological 
systems, leading to fitness consequences such as immunosuppression and 
inappetence which can inhibit recovery progress (Dickens et al. 2010; Baxter-
Gilbert et al. 2014; Refsnider et al. 2015). Continued biological response to 
stress can also cause impaired reproductive function and hypercortisolism, 
both of which can have a negative impact on post-release survival (Carlstead 
& Shepherson 2000; Pryce et al. 2002; Soltis et al. 2003; Narayan et al. 
2012).

However, the extent to which the captive environment can cause stress 
in marine turtles, and how this may affect survival during rehabilitation or 
post-release, remains relatively unknown. It has been suggested that to 
improve the success of conservation interventions (such as rehabilitation for 
release), increased collaboration between animal welfare and conservation 
physiology is required (Teixeria et al. 2007). It is therefore essential that 
those working with marine turtles during rehabilitation are able to detect 
behavioural indicators of stress in order to achieve optimal welfare conditions 
and improve intervention success. Similarly, it is imperative that we are able 
to establish the severity of potential stressors associated with environmental 
trauma and disease (Narayan 2019). In one study of captive three-toed box 
turtles (Terrapene carolina triunguis), the attachment of a radio transmitter 
did not increase stress; however, levels of faecal glucocorticoid metabolite 
did rise significantly in both control and treatment groups during the study, 
which was carried out in captivity (Rittenhouse et al. 2005).

It has been suggested that the most reliable means of visualising stress 
includes behavioural assays in order to supplement lab-based hormonal 
measurements (Otovic & Hutchinson 2015). The major glucocorticoid or stress 
hormone in turtles (like all herpetofauna) is corticosterone (Case et al. 2005). 
Non-invasive methods of measuring the stress hormone corticosterone, 
including the use of faecal corticosterone metabolites (FCM), are becoming 
more prominent in the assessment of stress (Dehnhard et al. 2001; Weingrill 
et al. 2004; Franceschini et al. 2008; Narayan et al. 2012; Shepherdson et al. 
2013; Watson et al. 2013; Narayan et al. 2018). 
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Animal behaviour may be used to visualise signs of stress in captive animals. 
Although many taxa exhibit species specific behaviours in response to acute 
stress, long term stress may be more likely to be manifested in stereotypic 
behaviour. One of the most recent examples of chronic stress and associated 
stereotypic behaviour in rehabilitated wildlife was reported in a study conducted 
on Asiatic black bears (Ursus thibetanus). Narayan et al. (2018) showed that 
newly rescued bears from bear bile farms generated significantly high levels 
of physiological stress and expressed stereotypic behaviour. In a study by 
Vaz et al. (2017) correlation between both faecal corticosterone metabolite 
concentration and prevalence of stereotypic behaviour was also found in 
captive Royal Bengal tigers (Panthera tigris tigris) and Indian leopards (Panthera 
pardus fusca). Stereotypic behaviour is widely linked to stress in other research 
(Würbel & Stauffacher 1996; Mason & Rushen 2006; Malmkvist et al. 2011), 
although it is also hypothesised that it can develop as a coping mechanism 
to reduce stress (Rushen 1993; Wechsler 1995) and so relationships between 
stereotyping and physiological stress biomarkers may be complex (Cooper & 
Nicol 1993). Whilst there continues to be some ambiguity over the definition 
of stereotypic behaviours, historically the repetitive and invariant manner in 
which a behaviour is performed, as well as a lack of any apparent function 
of the behaviour, is a widely accepted characteristic (Mason & Rushen 2006; 
McBride & Parker 2015). Repeating pathways within an enclosure (referred 
to as pacing) is a common stereotypic behaviour found in captive terrestrial 
carnivores such as bears and large felids (Poulsen et al. 1996; Lyons et al. 1997; 
Margulis et al. 2003; Bashaw et al. 2007; Yalcin & Aytug 2007; Miller 2012; 
Shepherdson et al. 2013). In an aquatic setting a comparable behaviour referred 
to as ‘pattern swimming’ has been identified in marine turtles, including green 
turtles (Therrien et al. 2007). It is often hypothesised that the development 
of this stereotypic behaviour stems from the inability to hunt, inability to 
escape from the enclosure, or frustration born of an insufficient range area 
(Poulsen et al. 1996; Lyons et al. 1997; Margulis et al. 2003; Clubb & Vickery 
2006; Bashaw et al. 2007; Yalcin & Aytug 2007; Miller 2012; Shepherdson 
et al. 2013). Less complex and/or naturalistic captive environments are also 
thought to foster the development of stereotypic behaviours (Mason et al. 
2013; McBride & Parker 2015), and increased enclosure size and introduction 
of environmental enrichment has been found to decrease prevalence in large 
felids (Vaz et al. 2017). Green turtles inhabit large home ranges and undertake 
migratory movements over large distances thus encountering wide variation 
and sensory stimulation within their environment (Mendonca 1983; Lutz et 
al. 2002), and therefore confinement in smaller and unnatural enclosures may 
be a contributing factor to the development of stereotypical behaviour such 
as pacing (Mason et al. 2013; McBride & Parker 2015). It may also represent 
underlying physiological stress.
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The use of both behavioural and physiological markers of stress could make 
it possible for those working with marine turtles in a rehabilitation setting to 
identify stress in real-time, with possibility of early detection. Development 
in this area would extend to other conservation interventions such as 
translocation and captive breeding programmes. This study aims to identify 
whether repetitive pathways (as a behavioural assay used for quantifying 
stereotypic behaviour) are present within a small group of captive green 
turtles housed in a rehabilitation environment. For the first time in a marine 
turtle species, we also trialled the use of faecal corticosterone metabolites 
(FCM) as a biological marker of stress in a non-invasive alternative to the 
classical use of blood sampling. It is hypothesised that the rescued green 
turtles will show stereotypic behaviour and record detectable levels of FCMs.

Materials and methods 
Study site and study animals
The study took place at Cairns Turtle Rehabilitation Centre, located on Fitzroy 
Island in Queensland, Australia, between June and July 2018. Four green 
turtles (Chelonia mydas) were included in the study. The subjects varied in 
age, sex, time in captivity and medical history (Table 1). 

Turtles were housed individually in circular tanks with a surface area of 
12.45m2 (diameter = 4m), filled with sea water to a volume of 8.37m3 (depth 
= 0.67m). Tanks were situated in an outdoor environment covered by a 
canopy, with water temperature ranging from 25-30°C during the period of 
data collection. Each tank was fitted with two bag filters which were removed 
and cleaned daily with a high-pressure hose and sea water. Turtles were fed 
an ad libitum diet of prawns, squid and whitebait daily between 09:00 and 
10:00 AEST, or until appetite supressed. Feed was equally distributed around 
the tank by hand from a distance. Tanks were cleaned daily between 10:00 
and 10:30 whilst the turtle remained in the tank, using a siphon and a fine 
mesh net measuring 21x16cm.

Public tours (of between 15-20 people) took place daily between 13:00 
and 14:00 and involved one turtle per day. Data collection was carried out 
on a rolling basis, whereby the subject involved in the public tour was not 
observed over the 48 hours following. A hands-off policy was not in place 
at the facility and volunteers were encouraged to interact with the turtles, 
except for the two juvenile subjects. Interaction involved moving the turtle 
around the tank to encourage swimming, and scratching the carapace as a 
form of enrichment in replicating the sensation achieved through cleaning 
stations (Sazima et al. 2010; Monreal-Pawlowsky et al. 2017; Schofield et al. 
2017).

Data collection for this study did not alter the contemporary policy, 
conditions and husbandry regime of the study site.
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Repetitive pathways: zone sequence analysis
Pacing is often categorised by visual observation without parameters to 
identify at which point the behaviour switches from random to repetitive 
locomotion. Therefore, there remains a need for a method which can enable 
the extent of invariance to be quantified, with minimal degree of subjectivity. 
The probability of one behaviour following another specific behaviour is 
termed transition probability (Martin & Bateson 2007) and is often utilised 
in ethology (Verschure et al. 2003; Yang & Deb 2010; du Preez et al. 2015). 
If each component behaviour occurs in the same sequence this is described 
as deterministic. This can be quantified by using a transition matrix which 
provides transition probability. This model can therefore be used to define 
whether pathways within an enclosure are categorically repetitive and can 
allow the application of parameters and scale. This method, termed Zone 
sequence analysis, reveals 1) whether the observed transition probability 
differed significantly from the expected probability, 2) which pathways were 
actively used and 3) the increased probability that an active pathway will be 
taken (given the pathways available).

A GoPro HERO (GoPro Inc, USA) was affixed to the side of the tank using 
a suction cup mount. The camera was placed above the water surface to 
reduce disturbance of the animal. A pilot study was carried out over three 
days prior to the data collection period, during which time the camera 
equipment was affixed to aid habituation to the new stimulus, and to 
identify placement for optimal visibility.

Behavioural observations took place between 11:00 and 14:00 in one-
hour slots over a period of 14 days between 18 June and 6 July 2018. 
Subjects were recorded on a rotation basis in order to observe each subject 
at different times. Each subject was observed for a total of ten hours using 
continuous focal sampling. The tank was divided into twelve zones (Fig. 1). 
Each time the subject entered a new zone (>50% of body length), the zone 
number was recorded. 

Following each recording the footage was uploaded to a MacBook Air 
for analysis. Zone transitions were recorded and zone sequence analysis 
was applied to the extracted data. In order to determine whether pathways 
were repeated the transition between each zone was analysed for transition 
probability (TP), e.g. the probability that zone 1 will follow zone 2 rather 
than any other accessible zone (Martin & Bateson 2007). The sequence of 
zones was analysed for TP using a transition matrix (Martin & Bateson 2007) 
in Microsoft Excel for Mac v15.39. 

These data were paired with the expected TP, calculated from a random 
probability model based on the zones physically accessible to the subject, 
i.e. only five zones can be accessed from zone 1 (2, 6, 8, 7, 12) and so the 
random probability for each pathway is 0.2. Only the possible pathways were 
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considered, i.e. a subject cannot 
physically pass from zone 2 to zone 
5 and therefore this pathway is 
omitted from both datasets. 

Commonly, pacing occurs around 
the perimeter of an enclosure 
(perimeter-pacing) (Poulsen et al. 
1996; Lyons et al. 1997; Bashaw et 
al. 2007; Miller 2012; Shepherdson 
et al. 2013), although it has also been 
seen in other contexts, such as at the 
location of food distribution (Margulis 
et al. 2003; Yalcin & Aytug 2007). 
A secondary dataset produced from 
construction of the transition matrix 
expresses the route of each pathway 
using perimeter and central zones as 
the two variables. Therefore, the route 
p-p (perimeter zone to perimeter zone) 
can be used to illustrate the number 
of pathways which took place within 
the perimeter zone as a whole (Fig. 1), 
and thus followed the characteristic of 
‘perimeter pacing’.

Fig. 1. a) Diagram of the tank divided into 
twelve zones, with an overflow pipe at the 
centre of the tank acting as a landmark. 

16

34

811

12 7

10 9

5 2

Fig.1. c) Adult male green turtle (M-ADULT) 
in the perimeter zone of the tank at Cairns 
Turtle Rehabilitation Centre. 

b) Diagram of the tank divided into two 
zones, perimeter and central, with an 
overflow pipe at the centre of the tank acting 
as a landmark.

Perimeter zone Central zone
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Faecal corticosterone metabolite analysis
Faecal samples were collected opportunistically over a period of 14 days 
using a fine mesh net and stored on site in Low Density Polyethylene 
153-526 zip lock bags (Edu-Lab, UK) within a -20°C freezer on site. The 
maximum duration of time the sample may have remained in the tank 
before removal was 14 hours. At the end of the data collection period, 
samples were transported to the lab where they were placed within a -20°C 
freezer. Samples were transported on ice within an Insulated Hybrid Cooler 
model number 1315490 (Esky, Australia), Time outside of freezer conditions 
did not exceed six hours and temperature within the cooler was monitored 
throughout transit. Samples were assayed within one month of sampling. 

Faecal corticosterone metabolites were extracted from turtle faecal 
samples using the methods as previously described (Narayan et al. 2013). 
Briefly, samples were freeze-dried or lyophilized to eliminate all water 
content, ground, and a small amount was extracted using aqueous 
methanol. This was air-dried and then reconstituted in an assay buffer 
before analysis by the enzyme-immunoassay (EIA).

The EIA used was originally validated in our earlier research work (Narayan 
et al. 2010). Briefly, concentrations of faecal corticosterone metabolites 
were determined using a polyclonal anticorticosterone antiserum (CJM006) 
as described.

For the assay, the plates were prepared with buffered antibody and faecal 
samples using the method described by Narayan et al. (2010). They were 
incubated for two hours and when the reaction was stopped the optical 
density (OD) was read using an ELISA plate reader (ThermoScientific 
Multiskan SK, Ascent software version 2.6). Faecal corticosterone 
metabolites levels were expressed as ng/g dry weight.

Results 
Faecal corticosterone metabolite analysis
The EIA detected FCMs in the pool within 80% binding. Assay sensitivity 
was 2.01 ± 0.31pg well− 1. Recovery of corticosterone standard was 89%. 
Coefficient of variation for intra- and inter-run assay was 3.2% and 7.2% 
respectively. FCM was successfully extracted from a total of nine samples 
(range = 5.2-8.5ng/g, mean = 6.46 ng/g, SE = 0.38, CV% = 1.13). There 
was no significant difference between mean concentration across the four 
subjects (X2

3 = 3, p = 0.4) (Table 2). 

Zone sequence analysis
For F-JUVENILE, M-JUVENILE and F-ADULT the observed TP (TPo) differed 
significantly to the expected TP (TPe) of the random model (X2

37 = 54.2, p 
= 0.03; X2

46 = 67.7, p = 0.02, X2
53 = 71.9, p = 0.04 respectively), signifying 
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that these subjects repeated some pathways more frequently than others 
(Table 2). TPo of M-ADULT did not differ significantly from the expected TPe 
(X2

52 = 62.9, p = 0.14).

Table 2. Mean increase in transition probability and mean FCM concentration for each 
subject.

Subject Mean increased probability
( (TPo – TPe))

Mean FCM concentration (ng/g)

F-JUVENILE 0.20 8.50

M-JUVENILE 0.04 5.65

M-ADULT 0.02 6.95

F-ADULT 0.03 5.25

The Markovian chain displays which pathways were repeated more 
frequently than others, and the increased probability that each pathway 
would be taken (Fig. 2). For example, from zone 3 F-JUVENILE was 44% 
(0.44) more likely to travel to zone 2 than any other (accessible) zone (TPe 
= 0.20, TPo = 0.64). 

The mean increased probability of active pathways (TPo – TPe) indicates 
the extent to which each individual performed repeated pathways (Table 
3), which varied from 0.02 / 2% (M-ADULT) to 0.20 / 20% (F-JUVENILE); 
however, there was no statistical significance in the differences between 
the four subjects (X2

3 = 3, p = 0.4).
To reflect on the proportion of pathways which remained within the 

perimeter of the enclosure, the transition matrix (Fig. 3) can also reveal the 
proportion of perimeter to perimeter pathways as shown in Table 3.

Table 3. Pathways of all transitions. N is the number of pathways. R is the percentage of 
pathways which took this route.

F-JUVENILE M-JUVENILE M-ADULT F-ADULT

Total transitions 1465 698 598 792

  N R N R N R N R

Central > Perimeter 38 3% 63 9% 83 14% 106 13%

Central > Central 46 3% 101 15% 211 35% 289 37%

Perimeter > Central 40 3% 64 9% 86 14% 104 13%

Perimeter > Perimeter 

(p-p)

1341 91% 470 67% 218 37% 293 37%
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Discussion
Faecal corticosterone metabolite
One of the key aims of the study was to successfully extract FCM from a collection 
of temporarily captive marine turtles. Whilst there was no significant difference 
in mean concentration across the four subjects, this achievement is a valuable 
development in the endorsement of this method as an alternative to blood 
sampling in green turtles, and should be developed further to achieve validation 
and establish baseline data. To our knowledge, there is no previous published 
data on FCMs in marine turtles. However, in a study using a traditional blood 
sampling method, Hunt et al. (2016) showed that distressed leatherback turtles 
(Dermochelys coriacea) expressed over 2x higher levels of blood corticosterone 
compared to healthy turtles. In a study on captive three-toed box turtles in captivity, 
researchers did not detect a difference between control and treatment turtles 
before, during, or after radiotransmitter attachment, and did not find a significant 
relationship between time in captivity and faecal glucocorticoid metabolite levels 
(Rittenhouse et al. 2005). Therefore, it is can be suggested that activity of the HPI-
axis and levels of glucocorticoids quantified across taxa may vary depending on the 
context of the stressor. Further research is needed to determine if the sea turtles 
were adapted to routine health checks hence why we could not find significant 
difference in FCM levels between individuals; however, our sample size was low 
to make any conclusive remarks. Similarly, by ascertaining the true gut transition 
time of green turtles FCM analysis may also be used to indicate stress in response 
to stimuli, which will be an essential next step in exploring the impact of events 
such as medical interventions and other human-interaction. As every animal has 
its own stress-hormone baseline, in order to directly relate FCM concentration to 
stress long-term monitoring using an inclusive and multi-disciplinary approach is 
essential (Touma & Palme 2005), and should be approached using physiological, 
biological and behavioural assays. 

Zone sequence analysis
Zone sequence analysis revealed a statistically significant difference between 
the expected transition probability and observed transition probability for 
three of the four subjects. This result indicates that repetitive pathways were 
present in the sample population. There was no significant difference in the 
mean increased probability for all four subjects although this is unlikely to be 
conclusive given the limited sample size. 

Zone sequence analysis was successful in its aim; to quantitatively 
identify the presence of repeated pathways. This progress in measuring 
stereotypic behaviour has potential to lend itself to a variety of 
species within any enclosure with full visibility, providing a valuable 
step for research involving stereotypic behaviour in aquatic species.  
By developing our understanding of the factors influencing behavioural and 
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Fig. 2. Markovian chain displaying active pathways for each individual. Zones are displayed in 
each circle and mirror the layout as shown in figure 1. The increased probability is shown at 
each arrowhead. a) M-JUVENILE b) F-JUVENILE c) F-ADULT d) M-ADULT. 

Fig. 3. Example of transition matrix (M-ADULT) showing TPo probabilities, with TPe in brackets. 
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physiological stress response in the green turtle, it is hoped the methods 
may be used to inform the best practice husbandry of captive environments. 
Although the current study involved a small sample size, which is often the 
case for non-model taxa in captive settings, expansion to a larger sample size 
of broader demography may elucidate the applicability of these methods.

The monitoring of pacing behaviour may be integrated within ongoing 
health and welfare evaluation and the decision-making process for eventual 
release. It will be therefore essential to consider the impact of human 
interaction and other potential environmental stressors, as turtle behaviour 
is known to be sensitive to noise pollution, light pollution and tactile 
interaction (Witherington & Martin 2000; Therrien et al. 2007; Weilgart 
2007; Chepesuik 2009; Kamrowski et al. 2012).
  
Conclusion
In summary, the findings present an important opportunity to take the 
method of zone sequence analysis further in order to identify the factors 
which may influence the development of pacing in captive green turtles and 
other marine turtle species. 

The successful extraction and analysis of corticosterone metabolites 
concentration via faecal sampling should be an advocate for the use of this 
method as a non-invasive alternative to blood sampling, and as a means to 
reduce stress to the animal and thus improve welfare. 

It is imperative that research continues to improve our understanding of the 
interaction between stress physiology and the presentation of stress through 
behavioural indicators, and how both influence the success of conservation 
interventions aimed at reducing the decline of marine turtle populations. 
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